There is philosophy of mathematics. The below are my ideas of my philosophy of mathematics.
The axioms are true within the system that has those axioms. Therefore, the theorems that result from those axioms and rules, are also true in any system that has those axioms and rules.
It does not make it 'true' in an absolute sense (since it is 'true' within the system and any others (including the Platonic realism, and others too) that includes them), but absolute Truth is inexpressible (this is my conclusion from my study of mathematics and of philosophy of mathematics, but it applies to other stuff too).
However, you should avoid to be confused by such a thing, since some people apparently are. For example, just because some specific sequence of symbols has some use in some system, does not mean that it is the same in a different system (even if they can be mapped to them, which they often can be). Furthermore, even if "X OR NOT X" is true (regardless of what X is, as long as it is well-formed), that does not mean that either "X" must be true or "NOT X" must be true. And, just because values can be assigned to the symbols of classical (or other kind of) logic, does not make it necessary to assign those or any other values.
(Principia Discordia also has some things about "Psycho-Metaphysics".)
Agreed.
> Furthermore, even if "X OR NOT X" is true (regardless of what X is, as long as it is well-formed), that does not mean that either "X" must be true or "NOT X" must be true.
Independent of manipulating meaningless symbols, there's a whole branch of math called 'constructivism' where people try to find proofs without the 'law of the excluded middle'. Ideology / philosophy aside, the methods developed for this curiously handicapped game are of practical interest in computer science.