clickhouse.com
119
95
Boxxed 2 days ago

Does anyone use clickhouse in production? I was initially pretty impressed but when I really put it through its paces I could OoM it as soon as I actually started querying non-trivial amounts of data:

https://github.com/ClickHouse/ClickHouse/issues/79064

fishtoaster 2 days ago

Yep. Clickhouse is absolutely great for tons of production use cases.

Unless you try to join tables in it, in which case it will immediately explode.

More seriously, it's a columnar data store, not a relational database. It'll definitely pretend to be "postgres but faster", but that's a very thin and very leaky facade. You want to do massively a complex set of selects and conditional sums over one table with 3b rows and tb of data? You'll get a result in tens of seconds without optimization. You want to join two tables that postgres could handle easily? You'll OOM a machine with TB of memory.

So: good for very specific use cases. If you have those usecases, it's great! If you don't, use something else. Many large companies have those use cases.

Boxxed 2 days ago

Yeah I think that's a good summary. For instance, clickbench is comprised of >40 queries and there's not a single join in them: https://github.com/ClickHouse/ClickBench/blob/main/clickhous...

zX41ZdbW 3 hours ago

There is the "versions benchmark," which includes a lot of queries with JOINs and compares ClickHouse performance on them: https://benchmark.clickhouse.com/versions/

adrian17 2 days ago

The majority of our queries have joins (plus our core logic often depends on fact table expansion with `arrayJoin()`s) before aggregations and we're doing fine. AFAIK whenever we hit memory issues, they are mostly due to high-cardinality aggregations (especially with uniqExact), not joins. But I'm sure it can depend on the specifics.

legorobot 2 days ago

Definitely agree with this, I think ClickHouse can do a lot with joins if you don't implement them naively. Keeping the server up-to-date is a part of it too.

They've made strides in the last year or two to implement more join algorithms, and re-order your joins automatically (including whats on the "left" and "right" of the join, relating to performance of the algorithm).

Their release notes cover a lot of the highlights, and they have dedicated documentation regarding joins[1]. But we've made improvements by an order-of-magnitude before by just reordering our joins to align with how ClickHouse processes them.

[1]: https://clickhouse.com/docs/guides/joining-tables

hodgesrm 2 days ago

> More seriously, it's a columnar data store, not a relational database.

Could you explain why you don't think ClickHouse is relational? The storage is an implementation detail. It affects how fast queries run but not the query model. Joins have already improved substantially and will continue to do so in future.

fishtoaster 1 day ago

The storage is not just an implementation detail because it affects how fast things run, which affects which tasks it's better or worse for. There's a reason people reach for a columnar datastore for some tasks and something like postgres or mysql for other tasks, even though both are technically capable of nearly the same queries.

hodgesrm 2 days ago

It's used in production by many thousands of companies at this point. The ClickHouse Inc numbers are just a fraction of the total users.

p.s., It's also possible to break ClickHouse as you demonstrated. It used to be a lot easier.

Boxxed 2 days ago

I guess I'm curious how; I breathe on it wrong and it OoMs.

hodgesrm 2 days ago

One of the tradeoffs for ClickHouse versus databases like Snowflake is that you have to have some knowledge about the internals to use it effectively. For example, Snowflake completely hides partitioning but on the other hand it does not deliver consistent, real-time response the way a well-tuned ClickHouse application can.

When you use INSERT ... SELECT in ClickHouse you do need to pay attention to the generated table partitions, as they coexist in memory before flushing to storage. The usual approach is to break up the insert into chunks so you can control how many parts are generated or to adjust the partitioning in the target table.

It's possible the problem might be somehow related to this behavior but that's just conjecture. It's usually pretty easy to work around. Meanwhile if it's a bug it will probably get fixed quickly.

datavirtue 2 days ago

You have to have knowledge of the internals of any database you use. Not knowing is going to cost someone a lot of money and/or performance.

nasretdinov 2 days ago

One easy way to achieve this is to store really large values, e.g. 10 Mb per row. Since ClickHouse operates in large blocks you'd easily cause an OOM just by trying to read chunks of 8192 rows (the default) at a time, especially during merges, where it needs to read large blocks from several parts at once

bathtub365 2 days ago

You don’t need a good product to have a lot of users, just good marketing and salespeople.

mplanchard 2 days ago

Yes (via Clickhouse Cloud, which is pretty reasonably priced).

It’s important to structure your tables and queries in a way that aligns with the ordering keys, in order to optimize how much data needs to be loaded into RAM. You absolutely CANNOT just replicate your existing postgres DB and its primary keys or whatever over to CH. There are tricks like projections and incremental materialized views that can help to get the appropriate “lenses” for your queries. We use incremental MVs to, for example, continuously aggregate all-time stats about tens of billions of records. In general, for CH, space is cheap and RAM is expensive, so it’s better to duplicate a table’s data with a different ordering key than to make an inefficient query.

As long as the queries align with the ordering keys, it is insanely fast and able to enable analytics queries for truly massive amounts of data. We’ve been very impressed.

AlexClickHouse 1 day ago

Thanks for creating this issue, it is worth investigating!

I see you also created similar issues in Polars: https://github.com/pola-rs/polars/issues/17932 and DuckDB: https://github.com/duckdb/duckdb/issues/17066

ClickHouse has a built-in memory tracker, so even if there is not enough memory, it will stop the query and send an exception to the client, instead of crashing. It also allows fair sharing of memory between different workloads.

You need to provide more info on the issue for reproduction, e.g., how to fill the tables. 16 GB of memory should be enough even for a CROSS JOIN between a 10 billion-row and a 100-row table, because it is processed in a streaming fashion without accumulating a large amount of data in memory. The same should be true for a merge join.

However, there are places when a large buffer might be needed. For example, if you insert data into a table backed by S3 storage, it requires a buffer that can be in the order of 500 MB.

There is a possibility that your machine has 16 GB of memory, but most of it is consumed by Chrome, Slack, or Safari, and not much is left for ClickHouse server.

owenthejumper 2 days ago

I find Clickhouse fascinating, really good, and also really tough to run. It's a non-linear memory hog. It probably needs 32GB RAM for basics to run, otherwise it will OOM on minimal amount of data. That said, it won't "OOM", as in crash. It will just report the query would use too much memory, so it aborted the query.

hackitup7 2 days ago

Yes for relatively large workloads

_gmax0 2 days ago

Heard from the grapevine that CloudFlare uses it for their analytics.

tveita 1 day ago

They don't make a secret of it: https://blog.cloudflare.com/log-analytics-using-clickhouse/

Clickhouse is great, but like any database if you run it at scale someone must tend to it.

david38 2 days ago

It’s fantastic but it’s a columnar store. It’s not a Postgres replacement.

lossolo 2 days ago

7 years, 24/7 high volume, self hosted, no issues really.

the__alchemist 2 days ago

Is there an ELI5 for this company? I'm having a difficult time understanding it from their website. Is it an alternative to Postgres etc? Something that runs on top of it? And analyzes your DB automatically?

jameslk 2 days ago

When Postgres takes a while to answer analytical questions like "what's the 75th percentile of response time for these 900 some billion requests rows, grouped by device, network, and date for the past 30 days", that's when you might want to try out ClickHouse

cluckindan 2 days ago

Or literally any other OLAP database.

Is it a surprise that OLTP is not efficient at aggregation and analytics?

nasretdinov 2 days ago

ClickHouse also has great compression and it's easy to install and to try since it's open-source. Also it's typically much faster than even other OLAP, often by a _lot_

swyx 2 days ago

maybe HTAP works for most people though

NunoSempere 2 days ago

That seems like the kind of problem that would be easily done through monte-carlo approximation? How hard is it to get 1M random rows in a postgres database?

sylvinus 2 days ago

ClickHouse has native support for sampling https://clickhouse.com/docs/sql-reference/statements/select/...

jgalt212 2 days ago

I'm not sure storing 900B or 900MM records for analytics benefits anyone other than AWS. Why not sample?

sethhochberg 2 days ago

A use case where we reached for Clickhouse years ago at an old job was for streaming music royalty reporting. Days of runtime on our beefy MySQL cluster, minutes of runtime in a very naively optimized Clickhouse server. And sampling wasn't an option because rightholders like the exactly correct amount of money per stream instead of some approximation of the right amount of money :)

There's nothing Clickhouse does that other OLAP DBs can't do, but the killer feature for us was just how trivially easy it was to replicate InnoDB data into Clickhouse and get great general performance out of the box. It was a very accessible option for a bunch of Rails developers who were moonlighting as DBAs in a small company.

jgalt212 2 days ago

Yes, payments is an N=all scenario. Analytics is not, however.

antisthenes 2 days ago

Use-case dependent. For some analytics, you really want to see the tail ends (e.g. rare events) which sampling can sometimes omit or under-represent.

NewJazz 2 days ago

I'm struggling with TimescaleDB performance right now and wondering if the grass is greener.

andness 2 days ago

Started migrating away from TimescaleDB some time ago too. Initially we self-hosted to test it out. It was very quickly clear that it was a lot better for our use case and we decided to go with Clickhouse Cloud to not have to worry about the ops. The pricing for the cloud offering is very good IMO. We use it for telemetry data from a fleet of IoT devices.

whatevermom 2 days ago

Migrated from TimescaleDB to ClickHouse and it was like night and day. Naive reimplementation of the service performed wayyyy better than timescaledb. Self-hosted.

sukruh 2 days ago

It is.

applied_heat 2 days ago

What is the workload or query that is causing issues?

NewJazz 2 days ago

We denormalized some data then wanted to quickly filter by it. I managed to find a decent index to get us through, but now I'm stuck with another dimension in my data that I'd rather not have. I think I'll have to create a new table, migrate data, then rename it.

bandoti 2 days ago

Or if you have to use it because you’re self-hosting PostHog :)

arecurrence 2 days ago

Clickhouse has a wide range of really interesting technologies that are not in Postgres; fundamentally, it's not an OLTP database like Postgres but more-so aimed at OLAP workloads. I really appreciate Clickhouse's focus on performance and quite a bit of work goes into optimizing the memory allocation and operations among different data types.

The heart of Clickhouse are these table engines (they don't exist in Postgres) https://clickhouse.com/docs/engines/table-engines . The primary column (or columns) is ordered in some way and adjacent values in memory are from the same column in the table. Index entries span wide areas (EG: By default there's only one key record in the primary index for every 8192 rows) because most operations in Clickhouse are aggregate in nature. Inserts are also expected to be in bulk (They are initially a new physical part that is later merged into the main table structure). A single DELETE is an ALTER TABLE operation in the MergeTree engine. :)

This structure allows it to literally crunch billions of values per second (brutally, not with pre-processing, erm, "tricks" although there is a lot of support for that in Clickhouse as well). I've had tables with hundreds of columns and 100+ billion rows that are nearly as performant as a million row table if I can structure the query to work with the table's physical ordering.

Clickhouse recommends not using nullable fields because of the performance implications (it requires storing a bit somewhere for each value). That's how much they care about perf and how close to the raw data type it is that their memory allocation uses. :)

porridgeraisin 2 days ago

> Inserts are also expected to be in bulk (They are initially a new physical part that is later merged into the main table structure). A single DELETE is an ALTER TABLE operation in the MergeTree engine.

> They are initially a new physical part that is later merged into the main table structure

> A single DELETE is an ALTER TABLE operation

Can you explain these two further?

arecurrence 2 days ago

The Clickhouse docs are so good that I'd point straight to them https://clickhouse.com/docs/sql-reference/statements/alter/d... .

The reason I mentioned it is because it's a huge surprise to some people that... from the docs: "The ALTER TABLE prefix makes this syntax different from most other systems supporting SQL. It is intended to signify that unlike similar queries in OLTP databases this is a heavy operation not designed for frequent use. ALTER TABLE is considered a heavyweight operation that requires the underlying data to be merged before it is deleted."

There's also a "lightweight delete" available in many circumstances https://clickhouse.com/docs/sql-reference/statements/delete. Something really nice about the ClickHouse docs is that they devote quite a bit of text to describing the design and performance implications of using an operation. It reiterates the focus on performance that is pervasive across the product.

Edit: Per the other part of your question, why inserts create new parts and how they are merged is best described here https://clickhouse.com/docs/engines/table-engines/mergetree-...

porridgeraisin 2 days ago

Thankyou!

lbhdc 2 days ago

Its a db company that offers an open source database and cloud managed services.

The database is OLAP where Postgres is an OLTP database. Essentially it very fast at complex queries, and is targeted at analytics workloads.

datavirtue 2 days ago

Postgres has been used as the basis for several OLAP systems. These guys are probably using a modified Greenplum.

__s 2 days ago

I got to see Citus at Microsoft fail to close against ClickHouse for an internal project

ClickHouse spun out of Yandex & is open source, https://github.com/ClickHouse/clickhouse

Disclosure: I started at Citus & ended up at ClickHouse

lbhdc 2 days ago

As far as I am aware it is not a derivative of another database.

https://dbdb.io/db/clickhouse

Silasdev 2 days ago

SQL, OLAP, Primary use case is fast aggregations on append only data, like usage analytics.

It's fast, it's........ really fast!!

But you need to get comfortable with their extended SQL dialect that forces you to think a little different than with usual SQL if you want to keep perf high.

simantel 2 days ago

It's an alternative to Postgres in the sense that they're both databases. Read up on OLAP vs. OLTP to see the difference.

doix 2 days ago

I guess you could say it's an alternative to postgres. It's a different database, that's column oriented which makes different tradeoffs. I'd say DuckDB is a better comparison, if you're familiar with it.

pythonaut_16 2 days ago

Expanding for the original question:

Roughly speaking, Postgres is to SQLite what Clickhouse is to DuckDB.

OLTP -> Online Transaction Processing. Postgres and traditional RDBMS. Mainly focused on transactions and addressing specific rows. Queries like "show me all orders for customer X".

OLAP -> Online Analytical Processing. Clickhouse and other columnar oriented. For analytical and calculation queries, like "show me the total value of all orders in March 2024". OLTP database typically store data by column rather than row, and usually have optimizations for storage space and query speed based on that. As a tradeoff they're typically slower for OLTP type queries. Often you'd bring in an OLAP db like Clickhouse when you have a huge volume of data and your OLTP database is struggling to keep up.

ksynwa 2 days ago

What's the significance of "online" in these acronyms?

IMTDb 2 days ago

Online means you expect the responses to come quickly (seconds) after launching the request. The opposite is "offline" where you expect the results to come a long time after making the request (hours / days).

ClickHouse is designed so you can build dashboard with it. Other offline system are designed so you can build reports that you send in PDF over email with them.

edoceo 2 days ago

Live and real-time

stonemetal12 2 days ago

It is a rather old acronym. The other option was batch processing, you will get your results in the mail type thing.

Here "Online" means results while connected to the system, not real time since there is no time requirement for results.

joshstrange 1 day ago

If you go into it with MySQL/Postgres knowledge you will probably hate it.

Source: me

I almost wish it didn’t use SQL so that it was clear how different it is. Nothing works like you are used to, footguns galore, and I hate zookeeper.

I’d replace it with Postgres in a heartbeat if I thought I could get away with it, I don’t think our data size really needs CH. Unfortunately, my options are “spin up a Custer on company resources to prove my point” or “spin it up on my own infra” (which is not possible since that would require pulling company data to my servers which I would never do). So instead I’m stuck dealing with CH.

whobre 2 days ago

It's not like Postgres at all, except on the very superficial level. It is an analytical engine like BigQuery, Snowflake, Teradata, etc...

quantumwoke 2 days ago

Is this money for growth or exiting employee options?

vb-8448 2 days ago

I'm wondering why ClickHouse need to raise more money? Aren't they profitable already?

jedberg 2 days ago

Usually by Series C, you're at a point where you could be breakeven or profitable, but it's because you're tackling a huge market with a lot of opportunities, so it makes sense to take on capital to accelerate growth to attack that market.

bananapub 2 days ago

oof, that sucks [for everyone else]. I hope someone figures out how to make a sustainable business of this sort, eventually.

candiddevmike 2 days ago

Being a profitable database vendor is really, really hard. You absolutely have to lock down big customers during your hype cycle or you're done for. The time to value for customers is so long, it becomes such an investment and sales cycles become really laborious (as a former DB SE in the past).

hodgesrm 2 days ago

Or you focus on cost-efficient operation from very the beginning. Ironically databases are also one of the markets where it's possible to achieve profitability operating, extending, or supporting open source software. I did a talk at FOSDEM 2025 about how three specific companies (Percona, DBeaver, Altinity) achieved this. [0] It is possible because businesses depend on databases and are willing to pay real money to ensure they work properly.

[0] https://fosdem.org/2025/schedule/event/fosdem-2025-5320-buil...

Disclaimer: I run Altinity.

datavirtue 2 days ago

Yep, there will be an alternatives on Azure and AWS soon enough, if not already.

amazingamazing 2 days ago

How hard is it to self host clustered clickhouse? Is there parity with the hosted offering?

nasretdinov 2 days ago

It's quite easy to host your own instance, we've done it ~7 years ago and had a cluster of over 50 nodes without any major issues. What ClickHouse Cloud offers is "shared nothing" storage, via SharedMergeTree that has S3 as a backing store, and it allows to scale storage and compute separately. The implementation is closed source.

amazingamazing 2 days ago

Interesting - hardware is so cheap though, I guess most enterprises don’t want the hassle.

Personally I’d just go to a colo center buy a rack of super micro and call it a day. No way that’s more expensive after a year (per public pricing).

nasretdinov 2 days ago

Sharding in Open-Source version isn't automatic, so you have to manage it yourself, as in there is no automatic resharding and you need to insert data accordingly. IMO that's the biggest bottleneck in its adoption at larger scale. Previously you didn't have a choice in terms of whether or not to do sharding (and compute/storage separation if you want it), now you have more options, including one from ClickHouse authors themselves.

nine_k 2 days ago

Apparently it's not a bottleneck, it's a sales funnel.

nasretdinov 2 days ago

I don't see a contradiction here tbh. There's nothing wrong in not providing some extra functionality for free (especially for features that users will pay for). If you have engineering resources to manage sharding manually you're welcome to do so. Since ClickHouse is a commercial company and not part of Yandex they need to earn money one way or another to fund the database development.

marvinblum 2 days ago

It's not that hard, but there are a few pitfalls you can stumble into. I currently run three clusters for myself and have set some for clients in the past.

Some of the default config options are weird and SSL is something that needs to be addressed. Overall, still one of the easier DBs to maintain.

devops000 2 days ago

only 2k users?

with 200$/month I have a good database. $1-5M revenue?

arecurrence 2 days ago

I've worked at a number of companies using Clickhouse and they all self-hosted. I imagine Clickhouse corporate is focused on large customers.

noleary 2 days ago

My understanding is that those 2,000 represent some very large and enterprise-y contracts. The GitHub itself has almost 2,000 contributors: https://github.com/ClickHouse/ClickHouse

brettgriffin 2 days ago

the ACV for a data warehouse is orders of magnitude beyond $200. Snowflake's ACV is something like $300k/yr

wooque 2 days ago

we use smallest cluster and it's $450/month, most companies probably pay much more.

dangoodmanUT 2 days ago

I love clickhouse and a lot of the team members, but some of the "ClickHouse, Inc." people seem very counter to the original mission of CH, which has been unfortunately been reflected in some negative ways to both the overall OLAP ecosystem, and clickhouse itself.

I've shared many of those thoughts with their team directly out of love.

Also that's Series D-E, money isn't real anymore

nasretdinov 2 days ago

I personally see ClickHouse still improving in terms of overall usability and becoming much more polished, introducing features like full-text indexing, JSON data type, etc, all open-source and completely free. The commercial offering deviates from the "bare-bones", "build-it-yourself" storage, but, again, in my opinion it makes perfect sense to commercialise this part of it, to allow the product overall to continue to evolve and be successful. Otherwise ClickHouse as an open-source database probably wouldn't be able to evolve so quickly since the needs of Yandex don't always align with the needs of other users of the database

Octoth0rpe 2 days ago

> Also that's Series D-E, money isn't real anymore

Could you explain this? Is this commentary on voting power dilution or their class a/b share rules?

mooreds 2 days ago

Not OP, but I took it to mean that the round was absurdly large. The norms/expectations around size of rounds are not what they once were.

I had the same thought the first time I heard about a 12M "seed" round.

ko_pivot 2 days ago

I’m guessing what they mean is that the valuation is so inflated at this point that the high dollar amount more reflects the likelihood of acquisition or IPO in the near term rather than some sort of substantive demonstration of confidence in the company and its founders.

PeterZaitsev 2 days ago

What differences from original mission do you see ?

jasonjmcghee 2 days ago

Depends on trajectory and capital need among other things. There are series B this size.

whiskeytwolima 2 days ago

I honestly just want to know why they didn't steam their shirts.

ajcp 2 days ago

I'm really confused by the wrinkle pattern. Were they stored with half the shirt stuffed in a Pringles can? Or were these shot out of a air-cannon? The more I look at the picture the deeper the mystery gets.

tylerhannan 2 days ago

I actually took that picture a few years ago.

It's a fun story.

Our first swag shipment with the new colours had just arrived, the founders were in one place together for one of the first times, the weather wasn't terrible in Amsterdam for one day.

Not a pringles can. Rather they were stuffed in a shipping box that came from a warehouse, manhandled by customs, and thrown onto them for the purpose of taking the photo.

#startuplife eh?

whiskeytwolima 2 days ago

Love it, and I've definitely been there. Too funny though.

winterbloom 2 days ago

so like iron? is it that important? asking legitimately

whiskeytwolima 2 days ago

Nah I don't think it's important. I just think it's funny.